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Automated Data Acquisition and Analysis at
the Benefield Anechoic Facility

Robert M. Taylor
Computer Sciences Corporation
P.O. Box 446, Bldg. 1030
Edwards AFB, CA 93524
805-277-5717
taylorr%eww@mbs.elan.af. mil

Abstract—Automated data acquisition and
analysis methods at the Benefield Anechoic
Facility have improved the test process.
Programming has primarily been implemented
with a graphical programming language for
test and evaluation created by Hewlett-
Packard called isual Engineering
Environment (HP-VEE™). First is a Signal
Verification System (SVS) (Reference 1). A
second example is an aircraft antenna pattern
testing data analysis program called Antenna
Pattern Correction Software (APCS). A final
example is a transmission line network analysis
program for remote test equipment.
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1. INTRODUCTION

The Benefield Anechoic Facility (BAF) is part
of the Avionics Test and Integration Complex
at Edwards Air Force Base, California. The
BAF is primarily an aircraft avionics and

Jay Pasimio
Computer Sciences Corporation
P.O. Box 446
Edwards AFB, CA 93523
805-277-5741
pasimio%eww(@mhs.elan.af mil

electronic warfare test and evaluation facility.
However, the size of the BAF makes it a viable
test resource for a wide variety of platforms.
Dimensions of anechoic chamber are 250-foot
width, 264-foot length, and 70-foot height.
The chamber is equipped with a ceiling hoist
capable of lifting 40 tons and a 80-foot
diameter floor turntable capable of turning
250,000 pounds from 0.1 to 0.6 degree per
second.  Aircraft utilities provided include
electrical, hydraulics, and cooling.

An extensive assortment of simulated emitters
can be remotely programmed using a Combat
Electromagnetic =~ Environment  Simulator
(CEESIM) and transmitted to the aircraft
located in the anechoic chamber. Radar
absorbing material (RAM) covers the walls,
floor and ceiling to minimize reflections and to
simulate a free-space environment. Typically,
aircraft are tested in the BAF anechoic
chamber for various parameters of electronic
warfare through radiated emissions.

Automated data acquisition and analysis
methods have greatly increased the efficiency
of the test process at the BAF. Programming
has principally been implemented with a
software package created by Hewlett-Packard
callecé@Visual Engineering (Snvironment (HP-
VEE™). The HP-VEE™ 1is a graphical
programming environment essentially used for
test equipment control and data reduction, and
can reduce program development time by as



much as 80 percent. Several examples show
the usefulness HP-VEE™ in data acquisition,
data analysis, and network analysis.

2. SIGNAL VERIFICATION SYSTEM

The first example of the data acquisition and
analysis automation improvements is a Signal
Verification System (SVS). Previously, signals
were verified through manual operation of test
equipment. Measurements were time
consuming and tedious for operators. The
SVS was developed to assist operators and to
permit measurements to be computer
controlled by capturing the signal of interest,
characterizing the parameters as required, and
then reducing the data to a user-friendly format
for identification.

The BAF houses a CEESIM (8K model) in a
shielded room attached to the anechoic
chamber. The CEESIM is an advanced
multichannel simulator capable of generating
battlefield scenarios with many emitters up to
millions of pulses per second. Emitters are
time division multiplexed for simultaneous
transmissions, and are amplitude modulated to
simulate antenna scans. The RF pulses are
digitally generated and transferred to an RF
system of channels to individual antennas
located inside of the chamber. The signals are
then radiated to aircraft in the chamber. The
installed avionics and electronic warfare
systems of the developmental or operational
aircraft are then tested and analyzed for their
response to the emitted signals. The anechoic
chamber will support fighter, cargo, and
bomber-sized aircraft.

Prior to anechoic chamber testing,
programmed signals are checked to verify that
the RF signals are close approximations of
actual systems. Parameters that may require
verification include pulse width, pulse
repetition frequency, chirp bandwidth, various

modulations, scan rates, and simulated antenna
patterns. Measurement equipment included a
spectrum  analyzer, modulation domain
analyzer, and an oscilloscope. Prior to the
development of the SV, each signal had to be
manually captured and analyzed for individual
characteristics on each piece of test equipment.
Human operator errors occurred because of
the volume of data and the continuous
repetition of tasks.

The SVS was developed using HP—VEE® and
a computer workstation with drivers for the
various signal analysis test equipment. The
SVS program was written so that the
operation of signal verification was automated
to a user-friendly level for many simple and
complex signals. Figure 1 shows a block
diagram of the SVS system. Figure 2 shows
an example of an analysis by the SVS of an RF
signal generated by the CEESIM. The SVS
analysis showed that the example signal had a
dwelling pulse repetition interval (PRI)
modulation, where the PRI was the same for
several pulses.

The SVS was implemented into the BAF threat
generation system for a travelling wave tube
amplifier configuration. Metrics were taken
before and after the SVS was installed and
showed a significant reduction in operator time
of over 50 percent.

3. ANTENNA PATTERNS

A second example is aircraft antenna pattern
testing data analysis automation. Antenna
patterns of installed systems in the BAF are
useful in determining blockage from the
aircraft features in the antenna pattern, the gain
of the antenna on the aircraft, polarization, and
pattern coverage.
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Figure 1. SVS Block Diagram

Far-field conditions may be obtained in the
BAF for large apertures and ground planes due
to the size (250-foot width, 264-foot length,
and 70-foot height) of the anechoic chamber.
Far-field patterns can also be obtained for
aircraft antenna apertures when only the
aperture size is considered, though scattering
from aircraft features will introduce near-field
errors due to the size of the aircraft.

When taking antenna patterns on aircraft
apertures, the aircraft is typically rotated in
azimuth from the center of gravity, and the

antennas are not coincident from the center of
rotation. In some cases the antenna radius of
rotation may be several feet. Antenna pattern
rotations are referenced to the antenna, so an
algorithm was developed to translate from an
aircraft orientation to the location of the
antennas.

The offset center-of-rotation creates errors in
the antenna pattern from parallax and free-
space attenuation.  Figure 3 shows the
geometry of the angular error introduced from
the center-of-rotation offset.
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Figure 2. Plot of Dwelling PRI Modulated Signal. Total acquisition time was
about 6 seconds covering two dwelling cycles. The following PRI values were
measured: 100 usec, 110 usec, 120 usec, 130 usec.
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Figure 3. Antenna Pattern Center-of-Rotation Offset Configuration




A software program called Antenna Pattern
Correction S(gﬂware (APCS) was developed
on HP-VEE™. The APCS corrects for the
center-of-rotation offset errors and computes
the antenna gain through a measured antenna
pattern integration. Fi%re 4 shows an
overview of the HP-VEE™ APCS software,
and Figure 5 shows an expanded view of the

Phi Correction and Interpolation layer from
Figure 4.

Figure 6 shows a measure antenna pattern
before and after the APCS was applied.
Comparisons show good agreement after the
APCS correction is applied between patterns
measured in the BAF with patterns measured
at an outdoor facility shows.

Figure 4. HP-VEE®

APCS Summary Layer




Figure 5. Phi Correction and Interpolation Layer of HP-VEE® APCS

Figure 6. Antenna Pattern Before and After HP-VEE APCS Algorithm Applied




A pattern integration directivity algorithm was
also included in APCS. Comparisons were
within 0.3 dB of measured gains on an outdoor
range without the aircraft with those measured
in the BAF with the aircraft over several
elevation angles and with the APCS algorithm
applied.

4. TRANSMISSION LINE NETWORKS

A final example of data agglysis improvements
provided by the HP-VEE™ at the BAF was in
transmission line network analysis for remote
test equipment. Test equipment is typically
removed from jacked or hoisted aircraft to
minimize interference with measurements.
Power levels measured at test equipment
frequently must be translated to another
location. Measured data were acquired from
transmission line parameters of cables and
distributed components. Previously, only the
transmission loss (or S21  scattering
parameters) of each component was added in

i-1 Component

i th Component

series, which was less accurate as the input and
output impedance matching degrades for
components. An algorithm was needed to
combine the full S-parameter set for system
calibration for all load impedance cases,
especially when only component measurements
were possible.

A new algorithm includes all four scattering
parameters of each component as shown in
Figure 7, and uses the transducer gain equation
for the combined circuit as in Equation 1.
Although the system could include
components cascaded throughout the network,
only the contiguous component was included
in each network. The measured data is
combined into a system, and then reduced to
an equivalent network as in Figures 8 and 9.
Network algorithms are then used to translate
power information through the equivalent
network to remote locations. More accurate
results may be obtained with the new
algorithm.
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A test was conducted to check the new
algorithm when compared to system
measurements. A simple, three component
setup was measured including a band-pass
filter and a coaxial cable on each side. Each
component was measured separately and then
the system was measured. The S-Parameters
were combined using the new transducer gain

algorithm and the previous method of
cascaded S21 parameters. Since the cables
and filter are all impedance matched within the
band measured, all of the data is expected to
be very comparable. Table 1 shows a
comparison of the three methods, and as
expected, the results are very comparable.

Table 1. Cascaded S-Parameter Comparison of Band-Pass Filter Between Two Transmission Lines

Transducer
Equation
Frequency (GHz) Combination (dB)
14 -2.137
1.75 -0.177
2.0 -0.722
2.25 -0.912

25 -1.209

Cascaded
S21 System
Parameters (dB) Measurement (dB)

-2.044 -2.080
-0.167 -0.1713
-0.707 -0.726
-0.841 -0.869
-1.192 -1.273




5. SUMMARY

Several data acquisition and analysis programs
have been developed at the BAF to aid in test
and evaluation. The SVS was developed to
verify threat emitter parameters at the RF
level. The APCS was developed to translate
aircraft antenna pattern rotation from the
center-of-gravity to the antenna location, and
to compute a pattern integration. Remote
transmission  line = measurgments are
programmed using HP-VEE™ frequently,
though the algorithm used is less accurate for
unmatched loads. A transmission line network
program was developed to improve the
accuracy of the programs for all cases.

6. CONCLUSIONS AND RECOMMENDATIONS

Programming with the HP-VEE® has been
very successful in improving test and
evaluation at the BAF. The program reduces
operator time and improves the accuracy of
measurements. The SVS was successful in
automating data acquisition and analysis of the
threat generation system in a travelling wave
tube amplifier configuration, which was shown
to reduce measurement time significantly.
Measurements of lower power levels will be
investigated in the future such as for solid state
amplifiers. The APCS applied to installed
antenna measured data compared successfully
to antenna patterns and gains measured on an
outdoor range with a stand-alone antenna. A
transmission line network algorithm was
verified successfully and continued
development of the algorithm  and
implementation will improve the accuracy of
calibrations and remote measurement data.
Future measurements will include more
comprehensive networks with variable loa%g
impedance.  Programming using HP-VEE

will continue to improve the test and
evaluation process at the BAF and is

recommended for all measurements with
automation needs.
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